11,677 research outputs found

    A 1.82 m^2 ring laser gyroscope for nano-rotational motion sensing

    Full text link
    We present a fully active-controlled He-Ne ring laser gyroscope, operating in square cavity 1.35 m in side. The apparatus is designed to provide a very low mechanical and thermal drift of the ring cavity geometry and is conceived to be operative in two different orientations of the laser plane, in order to detect rotations around the vertical or the horizontal direction. Since June 2010 the system is active inside the Virgo interferometer central area with the aim of performing high sensitivity measurements of environmental rotational noise. So far, continuous not attempted operation of the gyroscope has been longer than 30 days. The main characteristics of the laser, the active remote-controlled stabilization systems and the data acquisition techniques are presented. An off-line data processing, supported by a simple model of the sensor, is shown to improve the effective long term stability. A rotational sensitivity at the level of ten nanoradiants per squareroot of Hz below 1 Hz, very close to the required specification for the improvement of the Virgo suspension control system, is demonstrated for the configuration where the laser plane is horizontal

    Near-Infrared spectroscopy of the super star cluster in NGC1705

    Full text link
    We study the near-infrared properties of the super star cluster NGC1750-1 in order to constrain its spatial extent, its stellar population and its age. We use adaptive optics assisted integral field spectroscopy with SINFONI on the VLT. We estimate the spatial extent of the cluster and extract its K-band spectrum from which we constrain the age of the dominant stellar population. Our observations have an angular resolution of about 0.11", providing an upper limit on the cluster radius of 2.85+/-0.50 pc depending on the assumed distance. The K-band spectrum is dominated by strong CO absorption bandheads typical of red supergiants. Its spectral type is equivalent to a K4-5I star. Using evolutionary tracks from the Geneva and Utrecht groups, we determine an age of 12+/-6 Myr. The large uncertainty is rooted in the large difference between the Geneva and Utrecht tracks in the red supergiants regime. The absence of ionized gas lines in the K-band spectrum is consistent with the absence of O and/or Wolf-Rayet stars in the cluster, as expected for the estimated age.Comment: 5 pages, 4 figures. Research Note accepted in Astronomy and Astrophysic

    Spectral and Diffusive Properties of Silver-Mean Quasicrystals in 1,2, and 3 Dimensions

    Get PDF
    Spectral properties and anomalous diffusion in the silver-mean (octonacci) quasicrystals in d=1,2,3 are investigated using numerical simulations of the return probability C(t) and the width of the wave packet w(t) for various values of the hopping strength v. In all dimensions we find C(t)\sim t^{-\delta}, with results suggesting a crossover from \delta<1 to \delta=1 when v is varied in d=2,3, which is compatible with the change of the spectral measure from singular continuous to absolute continuous; and we find w(t)\sim t^{\beta} with 0<\beta(v)<1 corresponding to anomalous diffusion. Results strongly suggest that \beta(v) is independent of d. The scaling of the inverse participation ratio suggests that states remain delocalized even for very small hopping amplitude v. A study of the dynamics of initially localized wavepackets in large three-dimensional quasiperiodic structures furthermore reveals that wavepackets composed of eigenstates from an interval around the band edge diffuse faster than those composed of eigenstates from an interval of the band-center states: while the former diffuse anomalously, the latter appear to diffuse slower than any power law.Comment: 11 pages, 10 figures, 1 tabl

    The Anderson model of localization: a challenge for modern eigenvalue methods

    Get PDF
    We present a comparative study of the application of modern eigenvalue algorithms to an eigenvalue problem arising in quantum physics, namely, the computation of a few interior eigenvalues and their associated eigenvectors for the large, sparse, real, symmetric, and indefinite matrices of the Anderson model of localization. We compare the Lanczos algorithm in the 1987 implementation of Cullum and Willoughby with the implicitly restarted Arnoldi method coupled with polynomial and several shift-and-invert convergence accelerators as well as with a sparse hybrid tridiagonalization method. We demonstrate that for our problem the Lanczos implementation is faster and more memory efficient than the other approaches. This seemingly innocuous problem presents a major challenge for all modern eigenvalue algorithms.Comment: 16 LaTeX pages with 3 figures include

    Nonlinear projective filtering in a data stream

    Full text link
    We introduce a modified algorithm to perform nonlinear filtering of a time series by locally linear phase space projections. Unlike previous implementations, the algorithm can be used not only for a posteriori processing but includes the possibility to perform real time filtering in a data stream. The data base that represents the phase space structure generated by the data is updated dynamically. This also allows filtering of non-stationary signals and dynamic parameter adjustment. We discuss exemplary applications, including the real time extraction of the fetal electrocardiogram from abdominal recordings.Comment: 8 page
    • …
    corecore